Chem. Ber. 117, 2322 - 2327 (1984)

Strukturvergleich von $H_2C = C(PPh_2)_2$ und $Ph_3P = C(PPh_2)_2$: Ein Beitrag zur Problematik der P = C-Doppelbindung in Yliden

Hubert Schmidbaur*, Rudolf Herr und Jürgen Riede

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 14. September 1983

Durch die Strukturanalyse von $H_2C = C(PPh_2)_2$ (1) konnte der konformationsbestimmende Effekt der C = C-Doppelbindung mit dem der P = C-Doppelbindung im Ylid Ph₃P = C(PPh₂)₂ (**A**) verglichen werden. Die Kristallstrukturanalyse von 1 ergab, daß im festen Zustand wirklich ähnliche Konformationen der Ph₂P-Gruppen relativ zur Grundebene des Moleküls vorliegen. Die dirigierende Wirkung ist jedoch nicht so stark wie im Ylid, so daß in Lösungen ³¹P-NMR-spektroskopisch auch bei -75 °C noch keine Nichtäquivalenz der P-Atome feststellbar ist. Die Rotationsbehinderung in **A** wird auf den *gauche*-Effekt der freien Elektronenpaare an P¹¹¹ und Ylid-C-Atom zurückgeführt. Nach Abstandskriterien entfallen bei 1 auch π -Wechselwirkungen C = P, während sie bei **A** offenbar erhebliche Beiträge leisten.

Structure Comparison of $H_2C = C(PPh_2)_2$ and $Ph_3P = C(PPh_2)_2$. A Contribution to the P = C Double Bond Problem in Ylides

Through a structure analysis of $H_2C = C(PPh_2)_2$ (1) the conformation-determining effect of the C = C double bond could be compared with that of the P = C double bond in the ylide $Ph_3P = C$ - $(PPh_2)_2$ (A). Single crystal X-ray diffraction of 1 showed that indeed analogous conformations of the Ph_2P groups relative to the basic plane of the molecule are present in the solid. However, the directing influence is much weaker in 1 than in A, and in solution even at -75 °C no non-equivalence of the P-atoms is detectable by ³¹P NMR spectroscopy. The restricted rotation previously found for A is therefore attributed to the *gauche* effect of the lone pairs of electrons at P¹¹¹ and the ylidic C atom. According to bond distances, no π -interactions C = P can be diagnosed in 1, while significant contributions of this type seem to be valid for A.

Bei Strukturuntersuchungen durch NMR-Spektroskopie bei variabler Temperatur in Lösung und durch Röntgenbeugung an Einkristallen wurde gezeigt, daß phosphinound stibinosubstituierte Phosphor-Ylide des Typs A^{1} bzw. B^{2} in den gezeichneten unsymmetrischen Konformationen vorliegen und erstaunlich hohe Rotationsbarrieren um die P – C-Einfachbindungen (A) aufweisen. Neben sterischen Effekten schienen hier vor allem elektronische Einflüsse von Bedeutung, die aus den Beiträgen der ylidischen Grenzformen A' bzw. B' verständlich werden. Die hohe Elektronendichte am planar konfigurierten zentralen Kohlenstoffatom führt zu einer verstärkten Abstoßung der freien Elektronenpaare der dreiwertigen Phosphoratome, der durch die Konformationen mit senkrecht zueinander angeordneten C_{p_2} - und P_{sp3} -Orbitalen Rechnung getragen wird. Zur Überprüfung dieser Vorstellungen schien es von Interesse, die Grundzustands-Konformation von phosphinosubstituierten Olefinen C aufzuklären, bei denen die R_2P -Substituenten an ein sp^2 -C-Atom einer klassischen C = C-Doppelbindung geknüpft sind. Obwohl auch hierfür eine polare Grenzform nicht völlig auszuschließen ist³, sollte sie doch von untergeordneter Bedeutung sein. Ein Vergleich von A und C (R = Phenyl) konnte deshalb zumindest Hinweise darauf geben, ob bei Yliden und Olefinen ein übereinstimmendes konformatives Verhalten vorliegt. Letzteres ließe dann auf analoge Bindungsbeziehungen des zentralen C-Atoms im Sinne der Ylen-Form⁴⁾ schließen. In einer parallel laufenden Arbeit wurde gleichzeitig der Beitrag der dipolaren Ylid-Form ausgelotet⁵⁾. Für beide wurden unabweisbare Indizien erbracht.

I. Synthese und NMR-Spektren von 1,1-Bis(diphenylphosphino)ethen (1)

Die Titelverbindung 1 ist nach einer kürzlich publizierten Vorschrift leicht aus 1,1-Dichlorethen⁶⁾ und Lithium-diphenylphosphid zugänglich. Zur Verfahrensvereinfachung wurde aber von Chlordiphenylphosphan anstatt von Triphenylphosphan ausgegangen. Es entfällt dann die Zerstörung des Phenyllithiums. Eigenschaften und spektroskopische Daten des so erhaltenen Produkts 1 stimmen gut mit den bereits angegebenen Werten überein⁶⁾. Bei Raumtemperatur zeigen ¹H-, ¹³C- und ³¹P-NMR-Spektren übereinstimmend eine Äquivalenz der beiden Ph₂P-Gruppen an, so daß sich für Lösungen keine Anzeichen für eine unsymmetrische Konformation mit hohen Rotationsbarrieren (wie in A) ergeben.

$$2 \operatorname{Ph_2PC1} \xrightarrow{4 \operatorname{Li}} 2 \operatorname{Ph_2PLi} \xrightarrow{C_2 \operatorname{CH_2}} \xrightarrow{\operatorname{Ph_2P}} \operatorname{C=CH_2} \xrightarrow{Ph_2 \operatorname{Ph_2P}}$$

Diese Äquivalenz bleibt aber auch, was bisher nicht nachgeprüft worden war, bis -80 °C (in Toluol) erhalten. Sollte also überhaupt eine unsymmetrische Konformation bevorzugt sein, so müßten die Aktivierungsenergien der Äquilibrierungsprozesse deutlich unter 8 kcal/mol liegen⁷⁾ und damit wesentlich niedriger sein als bei **A** (**R** = Ph).

II. Kristall- und Molekülstruktur von $H_2C = C(PPh_2)_2$ (1)

1 wird aus Ethanol in prächtigen farblosen Kristallen erhalten. Die Strukturbestimmung (vgl. Exp. Teil) ergab, daß isolierte Moleküle vorliegen, deren Grundgerüst C2 = C1 (P1, P2) eben aufgebaut ist (Abb. 1 und 2). Das die P-Atome verknüpfende olefinische C-Atom C1 ist damit trigonal-planar konfiguriert mit Valenzwinkeln P1C1P2 = 119.0(3)°, C2C1P1 = 124.7(3)° und C2C1P2 = 116.1(4)° (Winkelsumme 359.7°). Der Abstand C1 – C2 entspricht dem Richtwert für isolierte olefinische Doppelbindungen: 1.327(6) Å.

Abb. 1. Projektion der Molekülstruktur von 1 auf die Ebene C2C1P1P2 mit Atomnumerierung. Die H-Atome der Phenylreste sind weggelassen

Abb. 2. Projektion der Molekülstruktur von 1 parallel zur Achse C1-C2. H-Atome sind weggelassen, C2 ist von C1 verdeckt

Von zentraler Bedeutung für die hier gewählte Problematik ist die Konformation des Molekülteils $Ph_2P1 - C1 - P2Ph_2$. Man erkennt in Abb. 1 sofort, daß die unsymmetrische Form C (R = Ph) vorliegt, die der des Ylid-Analogen A (R = Ph) entspricht. In der Tat unterscheiden sich die relative Anordnung der Ph_2P-Gruppen und deren innere Dimensionen bei 1 und A kaum. Dies gilt für die Ph – P-Abstände ebenso wie für die Ph – P – Ph-Winkel (Tab. 1). Die Torsionswinkel sind zwar verschieden, doch ist die Abweichung prinzipiell gleichsinnig. Hier mögen auch Repulsionen zwischen dem freien Elektronenpaar an P2 und dem H-Atom H1 an C2 eine Rolle spielen.

Wichtige Unterschiede ergeben sich jedoch bei den Abständen P1-C1 und P2-C1, also zwischen den P^{III} -Atomen einerseits und dem olefinischen (1) bzw. ylidischen C-Atom (A) andererseits. Die Abweichungen sind so gravierend (1.829(4) und 1.838(4) versus 1.795(4) und 1.794(4) Å), daß für A eine besondere Bindungssituation anzunehmen ist. Während nämlich die Abstände P1-C1 und P2-C1 in 1 sich kaum von den zugehörigen P-Ph-Abständen unterscheiden, also "molekülintern konsistent

sind" (Tab. 1), sind sie in A (R = Ph) auch gegenüber diesen internen Bezugsgrößen (P - Phenyl) stark verkürzt.

Tab. 1. Ausgewählte Abstände (Å) und Winkel (Grad) in den Molekülstrukturen des Olefins 1 und (zum Vergleich) des Ylids A (R = Phenyl)¹⁾. Zur Atomnumerierung siehe auch Abb. 1

		Ph ₂ 'P, Ph ₂	Ph ₂ P ['] PPh ₃ Ph ₂ P ['] Ph ₂		
		1	A		
	1	A		1	A
C1 = C2	1.327(6)	_	P1 - C1 - P2	119.0(3)	119.4(3)
C1 = P3	~	1.720(4)	P1 - C1 - C2 (P3)	124.7(3)	128.8(3)
C1-P1	1.829(4)	1.795(4)	P2 - C1 - C2 (P3)	116.1(4)	107.4(2)
C1-P2	1.838(4)	1.794(4)	C11 - P1 - C21	103.1(2)	102.6(2)
P1-C11 (Ph)	1.837(4)	1.830(5)	C31 – P2 – C41	100.5(2)	101.6(2)
P1 - C21 (Ph)	1.827(6)	1.841(4)			
P2 - C31 (Ph)	1.819(6)	1.835(4)			
P2-C41 (Ph)	1.838(5)	1.831(5)			

Der Grund für diese Verkürzung von P1-C1 in A ist zweifellos in einer Weitergabe der vergleichsweise hohen Elektronendichte von C1 (Formel A'!) an die Atome P1 und P2 zu suchen. Dazu stehen sowohl d-Orbitale als auch symmetrieäquivalente Linearkombinationen von Orbitalkomponenten des σ -Gerüsts zur Verfügung. Jedes dieser Modelle führt zu π -Bindungsanteilen im Sinne der Formeln A'' und A'''. Hier wird klar, daß analoge Formeln C'' und C''' (mit Sextettzustand an C2) demgegenüber nur geringe Bedeutung haben können.

Es liegt nahe, die bei **A** (nicht aber bei **C**) gefundenen hohen Aktivierungsbarrieren der Ph₂P – C-Rotation mit diesen verkürzten Abständen in Beziehung zu bringen. Die konformativ bedeutsame Wechselwirkung zwischen freien Elektronenpaaren an P¹¹¹ und C1 muß sich bei stärkerer Annäherung der Atome in einer Einschränkung der Beweglichkeit bemerkbar machen. Es sei betont, daß ($p \rightarrow d$) π -Mehrfachbindungsanteile allein noch keine Rotationsbehinderung bedingen müssen, da für alle Rotameren geeignete Linearkombinationen von d-Orbitalen zur Verfügung stehen.

In der Tat erweist sich selbst die sehr kurze ylidische "Doppelbindung" $R_3P = CH_2$ im Experiment *nicht* als rotationsbehindert. Die theoretisch errechneten Barrieren gehen vorwiegend auf konformative Spannungen der ekliptischen Konformeren zurück⁸⁾.

Der hier angestellte Strukturvergleich von Verbindungen, in denen ein olefinisches (C) oder ein ylidisches (A) sp²-C-Atom an zwei dreiwertige P-Atome gebunden ist, zeigt analoge Grundzustands-Konformationen auf. Die Resultate unterstreichen somit insgesamt die gemeinsame Gültigkeit von Ylen- und Ylid-Formel A bzw. A' zur Erfassung der Bindungssituation in einschlägigen Systemen.

Chem. Ber. 117 (1984)

Unsere Arbeiten wurden in dankenswerter Weise unterstützt vom Fonds der Chemischen Industrie, Frankfurt/Main, sowie von der Deutschen Forschungsgemeinschaft.

Experimenteller Teil

1,1-Bis(diphenylphosphino)ethen (1): Eine Suspension aus 300 ml THF und 12 g feingeschnittenem Lithiummetall (1.720 mol) wird zum Sieden erhitzt. Dazu tropft man 83 ml (102.0 g) Chlordiphenylphosphan (0.462 mol) so zu, daß die Mischung weitersiedet. Ist alles zugegeben, so wird noch 1 h unter Rückfluß gekocht und die rote Lösung über Glaswolle in einen Tropftrichter übergeführt. Man legt dann in einem Kolben 19 ml (23.0 g) 1,1-Dichlorethen (0.237 mol), gelöst in 100 ml Benzol, vor und läßt die Phosphidlösung langsam zutropfen, wobei mit einem Wasserbad gekühlt wird. Nach vollständiger Zugabe wird mit 100 ml O₂-freiem Wasser und 15 ml konz. Salzsäure hydrolysiert, die THF-Phase abgetrennt und das Lösungsmittel abgezogen. Das zurückbleibende gelbe Öl kristallisiert bei Zugabe von Ethanol aus. Nach zweimaligem Umkristallisieren aus

	ATDM	X/A	Y/B	2/	Z/C	
	P1 P2 C1 C12 C12 C145 C145 C145 C222 C214 C222 C224 C224 C224 C224 C233 C234 C234	0.30999(0.03346(0.1257(0.0415(0.3361(0.3361(0.5447(0.5447(0.5173(0.0171(0.0171(0.0171(0.0171(0.1875(0.0177(0.1875(0.20722(0.4705(0.3285(0.3288(0.20322(0.4705(0.3288(0.20322(0.12512(0.2328		$\begin{array}{c} 55(11) \\ 0.(12$	$\begin{array}{c} 25491(9)\\ 177902(10)\\ 117992(10)\\ 11399(4)\\ 11397(4)\\ 11394(3)\\ 11304(3)\\ 11304(3)\\ 11304(5)\\ 11304(5)\\ 11302(4)\\ 11302(5)\\ 11302(4)\\ 11302$	
ATOM	B11	822	833	812	B13	B23
P1 P21 CCC1123 P21 CCCC1123 P21 CCC1123 CCC1123 P21 CCC1123 P21 CCC1123 P21 CCC1123 P21 CCC1123 P21 CC	$\begin{array}{c} 3. 61(\ 6)\\ 3. 77(\ 6)\\ 5. 5. 5(\ 2)\\ 5. 5. 5(\ 2)\\ 4. 7(\ 2)\\ 3. 6(\ 2)\\ 5. 5. 5(\ 2)\\ 5. 5(\ 2)\\ 4. 7(\ 2)\\ 5. 5(\ 2)\\ $	4,044,000,000,000,000,000,000,000,000,0	215(-44) 915(-4	2.14(5) 148(5) 148(5) 148(2) 1	1.1.775(00000000000000000000000000000000000	0.00440(0000000000000000000000000000000

Tab. 2. Atomkoordinaten und Temperaturfaktoren der Kristallstruktur des Olefins 1

Ethanol erhält man ein farbloses, kristallines Material, Ausb. 20.7 g (22%), Schmp. 112-115°C (Lit.⁶⁾ 114°C).

Strukturlösung von 1*)

Ein Kristall der ungefähren Größe $0.2 \times 0.25 \times 0.35$ mm³ wurde in einem Markröhrchen unter Stickstoff auf einem Vierkreisdiffraktometer Syntex P2₁ mit Mo- K_{α} -Strahlung (Graphit-Monochromator) im ω -Scan bei Raumtemp. vermessen ($\omega = 1^{\circ}$, intensitätsabhängige scan rate 1.1 bis 29.3 Grad pro min, $2 \Theta_{max} = 48.0^{\circ}$).

Die Berechnung der Zellparameter erfolgte mit 15 zentrierten Reflexen ($16^{\circ} < 2\Theta < 19.5^{\circ}$):

 $a = 10.011(3), b = 11.209(3), c = 12.979(4) \text{ Å}, \alpha = 81.99(3), \beta = 120.50(2), \gamma = 119.98(2)^\circ$, $V = 1074 \text{ Å}^3$, Z = 2, $d_r = 1.23 \text{ g} \cdot \text{cm}^{-3}$, Raumgruppe $P\bar{1}$.

5447 gemessene Reflexe (I) ergaben 3363 gemittelte symmetrieunabhängige Intensitäten, davon 62.4% (= 2098) beobachtete ($I > 1.96 \sigma I$). Nach Lorentz- und Polarisationskorrektur verblieben 2098 Strukturfaktoren ($F_{obs.} > 3.92 \sigma F_{obs.}$).

Die Lage der P-Atome konnte aus der Patterson-Synthese bestimmt werden. Die anschließende Differenz-Fourier-Synthese erbrachte die Lage der C-Atome. Die Koordinaten der H-Atome wurden nach idealer Geometrie berechnet und konstant gehalten.

253 Variable (50 Atome, P und C anisotrop) wurden mit 2084 Strukturfaktoren (F_{obs} > 3.98 σF_{obs}) bei voller Matrix verfeinert: R = 0.056, $R_w = 0.049$.

[310/83]

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50585, des Autors und des Zeitschriftenzitats angefordert werden.

¹⁾ H. Schmidbaur, U. Deschler und B. Milewski-Mahrla, Chem. Ber. 116, 1393 (1983).

²⁾ H. Schmidbaur, B. Milewski-Mahrla, G. Müller und C. Krüger, Organometallics 3, 38 (1984).

³⁾ H. Schmidbaur, R. Herr und J. Riede, Angew. Chem. 96, 237 (1984); Angew. Chem., Int. Ed. Engl. 23, 247 (1984).

⁴⁾ G. Wittig, Angew. Chem. 68, 505 (1956); 92, 671 (1980).

⁵⁾ A. Schier und H. Schmidbaur, Chem. Ber. 117, 2314 (1984), vorstehend.

⁶⁾ I. J. Colquhoun und W. McFarlane, J. Chem. Soc., Dalton Trans. 1982, 1915. ⁷⁾ Der Schätzwert geht von $\Delta\delta$ -Werten der ³¹P-NMR-Spektren von A (R = Ph) aus¹⁾.

⁸⁾ M. A. Vincent, H. F. Schaefer III., A. Schier und H. Schmidbaur, J. Am. Chem. Soc. 105, 3806 (1983).